A tree of leaves
Molecular phylogeny and biogeography of leaf insects

Sarah Banka, Royce T. Cummingb and Sven Bradlera

aAnimal Evolution and Biodiversity, University of Göttingen, Germany
bMontreal Insectarium, Montreal, Quebec, Canada

1. The true leaf insects (Phyllinae) are dorso-ventrally flattened, feature lobe-like expansions at body and legs and therefore uniquely masquerade leaves. Their phylogenetic position among Phasmatoidea has been recovered to be subordinate among the otherwise twig or bark resembling stick insect lineages1. In the past, leaf insects were considered as species poor, yet with a wide Oriental distribution stretching from the Seychelles (Indian Ocean) to Fiji (South Pacific)2. Despite the relatively small number of morphological diagnostic characters, 80+ species are currently recognised which mostly pertain to the same genus (Phyllium). Here we present the first phylogeny inferred from a comprehensive taxon sample of leaf insect corrobating molecular and geographical data.

2. 59 Phylliidae specimens
45 phasmatoidean outgroup species

- Set of five nuclear and mitochondrial genes (28S, H3, 16S, COI, COII)
- Tree reconstruction (IQ-TREE3+ UBoot4)
- Dating analysis (treePL5)
- Historical biogeography (BioGeoBEARS6)

3. Our molecular phylogenetic analysis reveals the presence of cryptic species, often in combination with a species’ occupation of different geographical areas. Phyllium is found to be paraphyletic. Pronounced sexual dimorphism (Nanophyllium) led at least in one case to the different sexes being described as two separate species. Nanophyllium females (Phyllium frondosum) askierense) were recovered as sister taxon to the remaining Phyllinae.

The origin of Phyllinae was reconstructed as Australia/Papua New Guinea/Southwest Pacific, an area still being connected at that time (\textasciitilde 50 mya). We observe one single dispersal event to the Philippines, and one to continental Asia, probably via Borneo. Low sea levels connecting the different landmasses allowed early leaf insects to spread throughout Southeast Asia.

The fossil species Eophyllium\textsuperscript{7} from Germany and the European stick insects (Bacillinae) as sister taxon to the extant Phyllinae8 indicate an ancestral range as far as Europe.

4. Our results highlight the need for a thorough revision of this Phasmatoidea subgroup.

References
1Simon et al. (2019) Old World and New World Phasmatoidea: Phylogenetics, Ancestry, and the Evolutionary History of Shar and Leaf Insects
2Gunther (1923) "Über die taxonomische Gliederung und die geographische Verbreitung des Genus Phyllium.
3Figuerola et al. (2015) IQ-TREE: A Fast and Effective Phylogenetic Algorithm for Estimating Maximum-Likelihood Phylogenies
4Hoef et al. (2015) Ultraparametric Approach for Phylogenetic Bootstrap
5Smith & Omland (2013) Inference divergence time estimation using penalized likelihood for large phylogenies.
7Klatt et al. (2007) The first fossil leaf insect: 47 million years of specialized mycophagy and behavior.

Acknowledgements
Thank you to A. Kang, B. Kruse/Jülicher, J. Larsson, F. Law-Sang and Z.-Y. Yang for providing specimens for this study. We would like to thank Tsumba LF for assistance in the molecular lab. Special thanks go to R. Goodwillie, T. Söderström, R. Limaus, A. Kang, D. Beattie, Z. Yang and R. Goodwillie for providing photographs.